Basic investigation on performance of low-density polymer gel dosimeter
Authors
Abstract:
Background: In this study a series of basic dosimetric properties of a low-density (LD) gel dosimeter are investigated. The dose response is studied regarding to linearity, sensitivity, dose-rate and energy dependence as well as lung tissue equivalence. Materials and Methods: The LD gel was made by mixing the polymer gel with expanded polystyrene spheres. Energy dependence was studied at two different energies: 1.25 MeV and 6 MV photon beams which were produced by 60Co and Linac machines. Investigation of dose rate dependence was performed in the low, medium, and high absorbed dose regions. Also reproducibility of dose response was studied in three sets of LD gel with identical preparation, irradiation and imaging procedure at three different days. Moreover the linearity and sensitivity were investigated up to 30Gy. Results: The results showed that the dose response was reproducible. The gel response was found linear up to 22Gy with r2=0.981 and sensitivity of 0.814S-1Gy-1. In the measured ranges, the dose response of LD gel was independent of beam energy within less than ±0.02 and dose rate had no effect on the gel response. LD gel was nearly lung tissue equivalent with mass density 0.37 to 0.4g/cm3 and relative electron density 0.41. Conclusion: MAGAT LD gel dosimeter appears to be a promising dosimeter in all aspects of dosimetric properties evaluated in this study. In addition, its high linearity together with no dose rate dependence in different level of absorbed doses makes it a suitable dosimeter to measure 3D-dose distributions inside a non-homogeneous media.
similar resources
basic investigation on performance of low-density polymer gel dosimeter
background: in this study a series of basic dosimetric properties of a low-density (ld) gel dosimeter are investigated. the dose response is studied regarding to linearity, sensitivity, dose-rate and energy dependence as well as lung tissue equivalence. materials and methods: the ld gel was made by mixing the polymer gel with expanded polystyrene spheres. energy dependence was studied at two d...
full textDose response evaluation of a low density anoxic polymer gel dosimeter using MRI
Background: The human body contains of different tissues and cavities with different physical and radiological properties. Most important among these are tissues and cavities that are radiologically different from water, including lungs, sinuses and bones. Gel dosimetry provides a unique feature to display dose distributions occurring in clinical radiation therapy in three dimensions. Materials...
full textThe basic radiation properties of the N-isopropylacrylamide based polymer gel dosimeter
Background: In this study the basic radiation properties of N-isopropylacrylamaide polymer gel dosimeter were determined together with verification of its soft tissue equivalency. Materials and Methods: The NIPAM gel was prepared and irradiated approximately 2 h after manufacturing. The magnetic resonance (MR) images were made 24 h after irradiation. The nuclear magnetic resonance (NMR) respons...
full textdose response evaluation of a low density anoxic polymer gel dosimeter using mri
background: the human body contains of different tissues and cavities with different physical and radiological properties. most important among these are tissues and cavities that are radiologically different from water, including lungs, sinuses and bones. gel dosimetry provides a unique feature to display dose distributions occurring in clinical radiation therapy in three dimensions. materials...
full textthe basic radiation properties of the n-isopropylacrylamide based polymer gel dosimeter
background: in this study the basic radiation properties of n-isopropylacrylamaide polymer gel dosimeter were determined together with verification of its soft tissue equivalency. materials and methods: the nipam gel was prepared and irradiated approximately 2 h after manufacturing. the magnetic resonance (mr) images were made 24 h after irradiation. the nuclear magnetic resonance (nmr) respons...
full textEffect of gold nanoparticles on dose enhancement of 6 Mv X-rayin MAGIC_f polymer gel dosimeter
Introduction: Currently, the potential application of gold nanoparticles (AuNPs) to increase the efficiency of radiation therapy have been investigated. However, the loss of an appropriate method to estimate the dose distribution in nanoparticle laden tissue limits the applicability of nanoparticles in radiotherapy clinics. Polymer gel dosimetry provides an accurate and precise...
full textMy Resources
Journal title
volume 14 issue None
pages 349- 353
publication date 2016-10
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023